

Safe zones in knee alignment, does it matter?

Sébastien LUSTIG MD, PhD

J. Shatrov, E. Sappey Marinier, C. Batailler, E. Servien.

Orthopaedic surgery and sport medicine department

Lyon University Hospital, France

EOR | VOLUME 1 | IAN 2016 DOI: 10.1302/2058-5241.1.000002 www.ufort.org/open/www.

In search of the « ideal » walking man

EFORT OPEN PEVIEWS

Coronal alignment after total knee arthroplasty

Timothy Lording¹ Sébastien Lustig² Philippe Neyret²

Anatomy and deformity

To describe the anatomy and coronal alignment of the leg, a number of descriptive terms are used.² The anatomical axis of each bone refers to a line drawn along the centre of

■ INSTRUCTIONAL REVIEW: KNEE

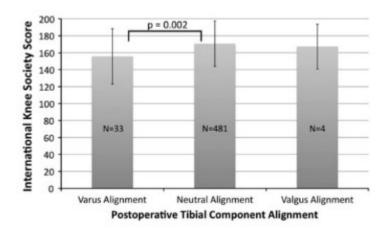
Coronal alignment in total knee replacement

HISTORICAL REVIEW, CONTEMPORARY ANALYSIS, AND FUTURE

M. P. Abdel, S. Oussedik, S. Parratte, S. Lustig, F. S. Haddad

From Mayo Clinic, Rochester, Minnesota, United States Substantial healthcare resources have been devoted to computer navigation and patientspecific instrumentation systems that improve the reproducibility with which neutral mechanical alignment can be achieved following total knee replacement (TKR). This choice of alignment is based on the long-held tenet that the alignment of the limb post-operatively should be within 3° of a neutral mechanical axis. Several recent studies have demonstrated no significant difference in survivorship when comparing well aligned versus malaligned TKRs. Our aim was to review the anatomical alignment of the knee, the historical and contemporary data on a neutral mechanical axis in TKR, and the feasibility of kinematicallyaligned TKRs.

Review of the literature suggests that a neutral mechanical axis remains the optimal quide to alignment.



Clin Orthop Relat Res DOI 10.1007/s11999-011-1988-6

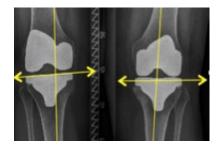
CLINICAL RESEARCH

Residual Varus Alignment does not Compromise Results of TKAs in Patients with Preoperative Varus

Robert A. Magnussen MD, Florent Weppe MD, Guillaume Demey MD, Elvire Servien MD, PhD, Sébastien Lustig MD, PhD

Long Follow—up!
We should not rely on 5 or 10Y FU

19Y. FU


Editorial > Knee Surg Sports Traumatol Arthrosc. 2022 Feb;30(2):365-367.

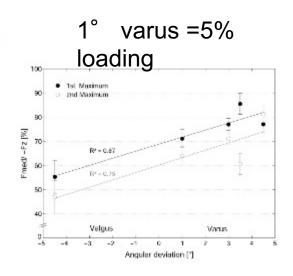
doi: 10.1007/s00167-021-06844-w. Epub 2022 Jan 20.

A safe transition to a more personalized alignment in total knee arthroplasty: the importance of a "safe zone" concept

Rüdiger von Eisenhart-Rothe ¹, Sebastien Lustig ², Heiko Graichen ³, Peter P Koch ⁴, Roland Becker ⁵, Arun Mullaji ⁶, Michael T Hirschmann ⁷ ⁸

Tibial loading and alignment?

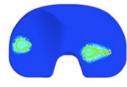
COPPRIGHT © 2012 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED


Influence of Limb Alignment on Mediolateral Loading in Total Knee Replacement

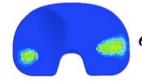
In Vivo Measurements in Five Patients

Andreas Halder, MD, PhD, Ines Kutzner, Friedmar Graichen, PhD, Bernd Heinlein, Prof., Alexander Beier, MD, and Georg Bergmann, Prof.

Investigation performed at Klinik für Endoprothetik Sommerfeld, Sommerfeld, Germany



KNEE


The effects of kinematically aligned total knee arthroplasty on stress at the medial tibia

A CASE STUDY FOR VARUS KNEE

Severe varus

42.7 MPa

60.4 MPa

S. Nakamura,*
Y. Tian,*
Y. Tanaka,
S. Kuriyama,
H. Ito,
M. Furu,

S. Matsuda

« ... » However, KA TKA increased the contact force, stress and bone strain at the medial side for moderate and severe varus knee models. The application of KA TKA for severe varus knees may be

Systematic alignment

1078 osteoarthritic knees

- => Arithmetic HKA
- => Joint line obliquity

See Surgery, Sports Transmistings, Scill rescripts stime (delega 10 100 chapter) and best in-

Mechanical alignment for primary TKA may change both knee phenotype and joint line obliquity without influencing clinical outcomes; a study comparing restored and unrestored joint line obliquity

Eller Supply Warner ¹⁰0 - Code Bataller ¹¹ - Admission¹ - And Schmidt¹ - Lourence Classe² - Supple J. Mad Schmidt¹ - Code Schmidt¹ - Code Schmidt¹ - Code Schmidt¹ - Sebertlen Lorig¹²

S. J. MacDessi,

In=1078 TKAs

Preoperative CPAK

		Classifica MP1	Total		
		<-2°	> 2°	Total	
MPTA + LDFA (Joint Line Obliquity)	< 177°	360 (33.4%)	210 (19.5%)	115 (10.6%)	685
	177° to 183°	110 (10.2%)	204 (18.9%)	68 (6.3%)	382
	> 183°	4 (0.4%)	6 (0.6%)	1 (0.1%)	11
To	tal	474	420	184	1078

Postoperative CPAK classificatio

		MPT	Total		
		<-2°	-2° to 2°	> 2°	Total
DFA ine iy)	< 177°	36 (3.3%)	32 (3.0%)	24 (2.2%)	92
MPTA + LDF (Joint Line Obliquity)	177° to 183°	184 (17.1%)	623 (57.8%)	76 (7.0%)	883
	> 183°	75 (7.0%)	22 (2.0%)	6 (0.6%)	103
To	otal	295	677	106	1078

Coronal Plane Alignment of the Knee (CPAK) classification

APEX PROXIMAL

Arch Orthop Trauma Surg DOI 10.1007/s00402-017-2629-7 CrossMark

KNEE ARTHROPLASTY

Does a third condyle TKA restore normal gait kinematics in varus knees? In vivo knee kinematic analysis

n = 2285 (Min 2y FU) Pre-OP
Post - OP
Post - OP
Control Group


Stance phase
Swing phase

IKS Knee score = 100 16 %

No pain 48 %

KNEE

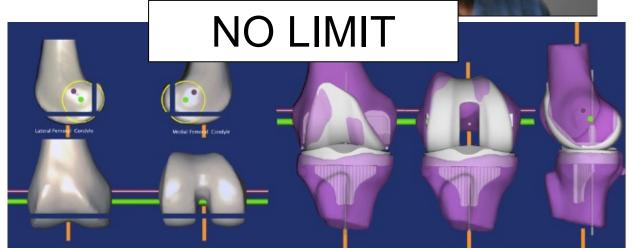
Kinematic alignment matches functional alignment for the extension gap: a consecutive analysis of 749 primary varus osteoarthritic knees with stress radiographs

E. Sappey-Marinier 1,2 $\odot \cdot$ P. Meynard $^1 \cdot$ J. Shatrov $^{1,3,4,5} \cdot$ A. Schmidt $^1 \cdot$ L. Cheze $^2 \cdot$ C. Batailler $^{1,2} \cdot$ E. Servien $^{1,6} \cdot$ S. Lustig 1,2

Personalized alignment = before OA

Kinematic alignment

Accurate alignment and high function after kinematically aligned TKA performed with generic instruments


Stephen M. Howell, Stelios Papadopoulos, Kyle T. Kuznik & Maury L. Hull

Rines Surgery, Sports Traumatology Arthroscopy

19961940-0056

Ringe Surg Sports Townstell Activities DOI 10.1007/400167-013-2601-9

Results

Studies Location	Location	Study design	Minimum follow-up (m)	Sample size		Me an age		Female		BMI (mean)		Prosthesis design	Operative method	Clinic al measurements	Radiological measurements	Other measurements
				KA	MA	KA	MA	KA	MA	KA	MA					
Dossett et al. [18]	United States	PRCT	24	44	44	66	66	41	38	29	32	KA: Vanguard, CR, FB, SR, cemented, all PR MA: Vanguard, CR, FB, SR, cemented, all PR	KA: PSI MA: Conventional	OKS, WOMAC, KSS, ROM	HKA, AKA, JLOA, FMA, TMA	Complications
Yeo et al. [39]	South Korea	PRCT	96	30	30	72	74	27	25	27	26	KA: NexGen, CR, FB, MR, cemented, partial PR MA: NexGen, CR, FB, MR, comented, partial PR	KA: ROBDOC system, robotic assisted MA: Robotic assisted	HSS, WOMAC, KSS, ROM	HKA, FMA, TMA, TS	Guit analysis
Laende et al. [40]	Canada	PRCT	24	24	23	64	63	16	17	36	34	KA: Triathlon, CR, FB, SR, cemented, all PR MA: Triathlon, CR, FB, SR, cemented, all PR	KA: PSI MA: Computer navigation	OKS, satisfaction, UCLA	HKA, MPTA	Tibial migration
McEwen et al. [41]	Australia	PRCT	24	41	41		65	NA			31	KA: Triathlon, CR, FB, SR, cementless feman, cemented tibia, partial PR MA: Triathlon, CR, FB, SR, cementless feman, cemented tibia, partial PR	KA: computer navigation MA: computer navigation	OKS, FIS, KOOS, JR, ROM	HKA, FMA, TMA, TS, JLOA, JLCA, PTA	Intraoperative gap laxity soft tissue release, 4 specific clinical questions, complications
Young et al. [38]	New Zealand	PRCT	60	47	48	72	70	25	26	30	31.5	KA: Triathlon, CR, FB, SR, cemented, partial PR MA: Triathlon, CR, FB, SR, cemented, partial PR	KA: PSI MA: Computer navigation	OKS, WOMAC, FIS, KSS, VAS	HKA, FMA, TMA, TS	Intraoperative gap laxity soft tissue release, complications

Kinematic versus mechanical alignment for primary total knee arthroplasty with minimum 2 years follow-up: a systematic review

Elliot Sappey-Marinier^{1,*}, Adrien Pauvert¹, Cécile Batailler¹, John Swan¹, Laurence Cheze², Elvire Servien^{1,3}, and Sébastien Lustig^{1,2}

Univ Lyon, Claude Bernard Lyon 1 University, IFSTTAR, LBMC UMR_T9406, 69622 Lyon, France

Received 23 April 2020, Accepted 24 April 2020, Published online 17 June 2020

« ... » In conclusion, we found that KA in TKA achieved **clinical and** radiological results similar to those of MA. « ... » The complication rate was not increased for KA TKAs. The present review suggests that **KA is an acceptable and alternative alignment to MA.** « ... »

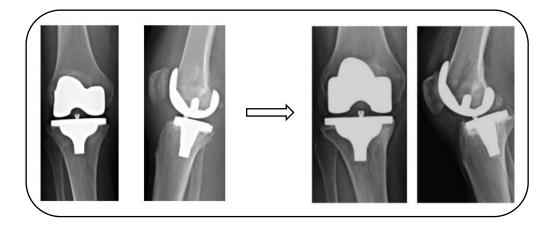
¹ FIFA medical center of excellence, Orthopaedics Surgery and Sports Medicine Department, Croix-Rousse Hospital, Hospices Civils de Lyon, 103 Grande rue de la Croix Rousse, 69004 Lyon, France

³ LIBM – EA 7424, Interuniversity Laboratory of Biology of Mobility, Claude Bernard Lyon 1 University, 69100 Villeurbanne, France

The real question

Residual varus?

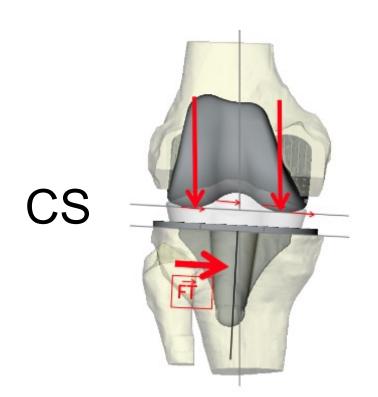
Knee Surgery, Sports Traumatology, Arthroscopy https://doi.org/10.1007/s00167-021-06714-5

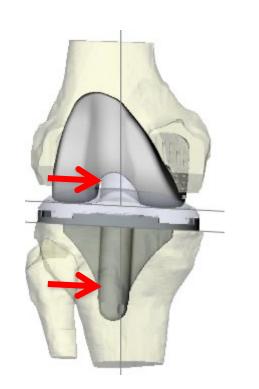

KNEE

Restricted kinematic alignment may be associated with increased risk of aseptic loosening for posterior-stabilized TKA: a case–control study

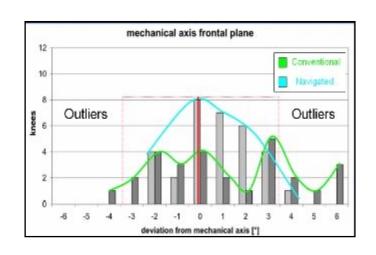
Elliot Sappey-Marinier^{1,2} • Jobe Shatrov^{3,4,5} • Cécile Batailler^{1,2} • Axel Schmidt¹ • Elvire Servien^{1,6} • Emmanuel Marchetti⁷ • Sébastien Lustig^{1,2}

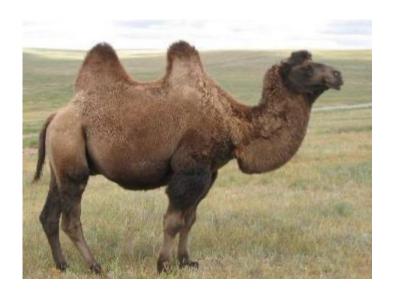
KA 4ys FU → 84% Survival rate....




Limits ?...

Which implant?

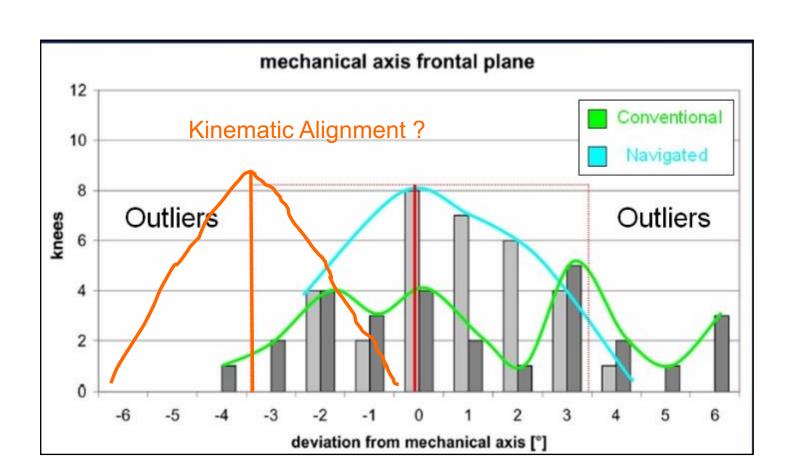





PS

Risk of Malposition?

Mechanical alignment Camel Curve



Fact n°1 : Smart tools mandatory

Vs

Safe zone?

Restricted Kinematic Alignment

HKA +/- 3°
Femoral & Tibia max 5°
Since 2011

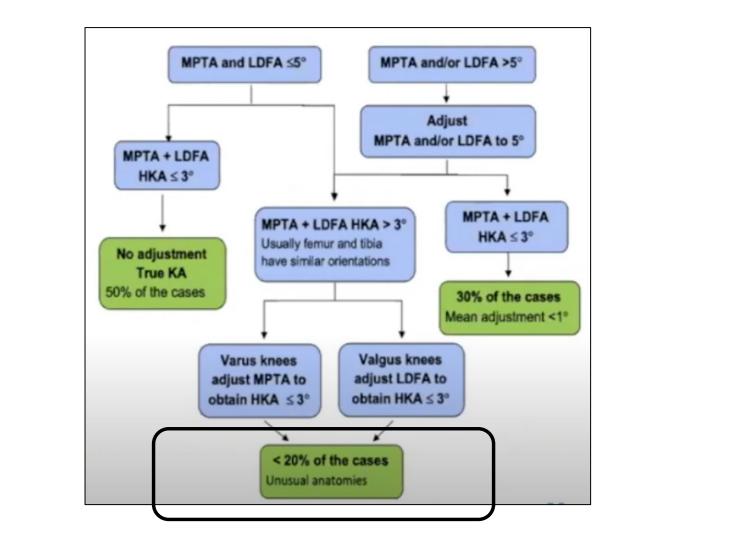
The Journal of Arthroplasty 32 (2017) 2133-2140

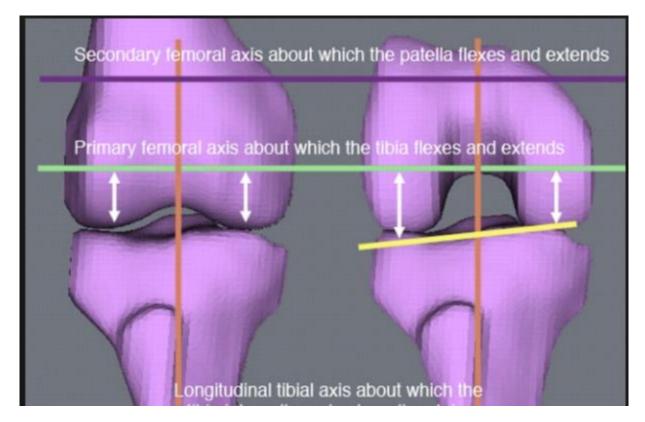
The Impact of Mechanical and Restricted Kinematic Alignment on Knee Anatomy in Total Knee Arthroplasty

Abdulaziz M. Almaawi, MD, MSc, FRCSC *, Jonathan R.B. Hutt, MA, MBBS, FRCS (Tr+Orth) *, Vincent Masse, MD, FRCSC *, Martin Lavigne, MD, MSc, FRCSC *. Pascal-Andre Vendittoli. MD. MSc. FRCSC *.*

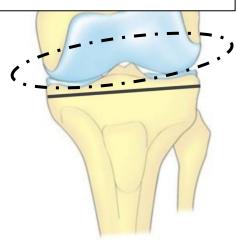
Less gap imbalance with restricted kinematic alignment than with mechanically aligned total knee arthroplasty: simulations on 3-D bone models created from CT-scans

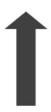

William Blakeney, Yann Beaulieu, Marc-Olivier Kiss, Charles Rivière & Pascal-André Vendittoli





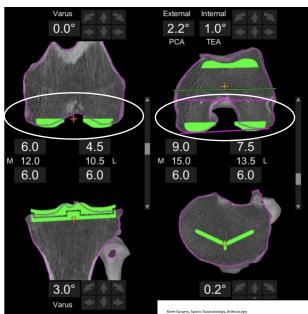
"..." "safe zones" for TKA alignment and suggested the use of a restricted KA protocol "..."


Varus Tibial Femur internal rotation (/ ATE)



INVERSE KINEMATIC ALIGNMENT

FEMORAL ADJUSTMENT



FEMUR

TIBIA

Courtesy Philip Winnock de Grave, MD

https://doi.org/10.1007/s00167-020-06165-4

KNEE

Higher satisfaction after total knee arthroplasty using restricted inverse kinematic alignment compared to adjusted mechanical alignment

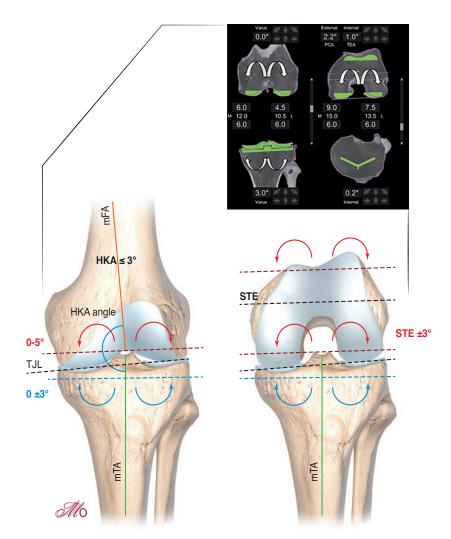
Philip Winnock de Grave 1 \odot · Thomas Luyckx 1,2 · Kurt Claeys 3 · Thomas Tampere 1,4 · Jonas Kellens 1,2 · Jacobus Müller 5 · Paul Gunst 1

Functional alignment

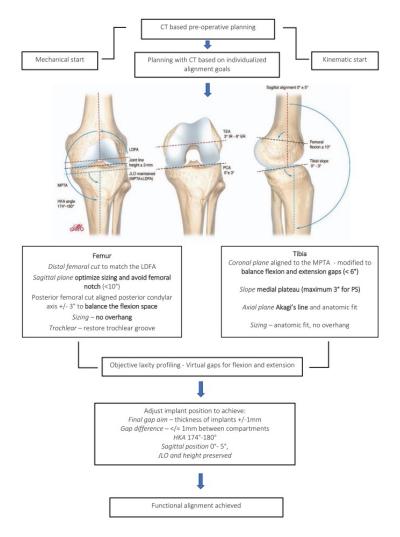
Review > Bone Joint J. 2020 Mar;102-B(3):276-279. doi: 10.1302/0301-620X.102B3.BJJ-2019-1729.

Alignment in total knee arthroplasty

Sam Oussedik 1 , Matthew P Abdel 2 , Jan Victor 3 , Mark W Pagnano 2 , Fares S Haddad 4



SICOT-J 2022, **8**, 11 © The Authors, published by EDP Sciences, 2022 https://doi.org/10.1051/sicotj/2022010



Available online at: www.sicot-j.org

Original Article Open 3 Access

Functional Alignment Philosophy in Total Knee Arthroplasty – Rationale and technique for the varus morphotype using a CT based robotic platform and individualized planning

Jobe Shatrov^{1,2}, Cécile Battelier^{1,3}, Elliot Sappey-Marinier^{1,3}, Stanislas Gunst^{1,3}, Elvire Servien^{1,3}, and Sebastien Lustig^{1,3,*}

Femur

Distal femoral cut to match the LDFA
Sagittal plane optimize sizing and avoid femoral
notch (<10°)

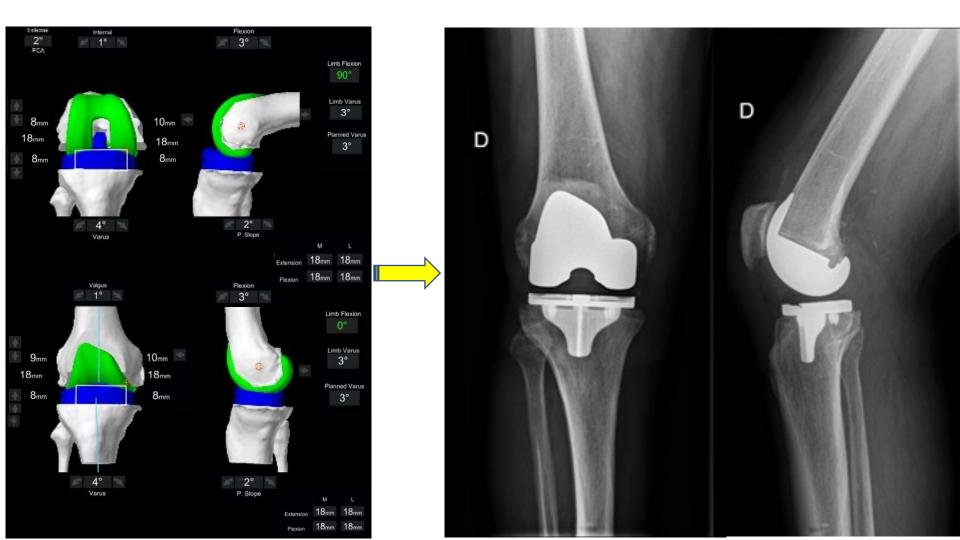
Posterior femoral cut aligned posterior condylar axis +/- 3° to balance the flexion space Sizing – no overhang

Trochlear - restore trochlear groove

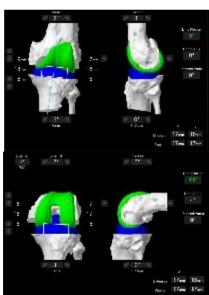
Tibia

Coronal plane aligned to the MPTA - modified to balance flexion and extension gaps (< 6°)

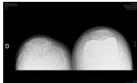
Slope medial plateau (maximum 3° for PS)

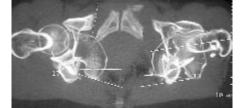

Axial plane Akagi's line and anatomic fit

Sizing – anatomic fit, no overhang


Objective laxity profiling - Virtual gaps for flexion and extension

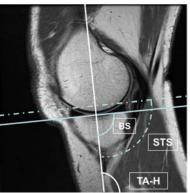
Adjust implant position to achieve: Final gap aim – thickness of implants +/-1mm

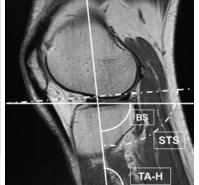




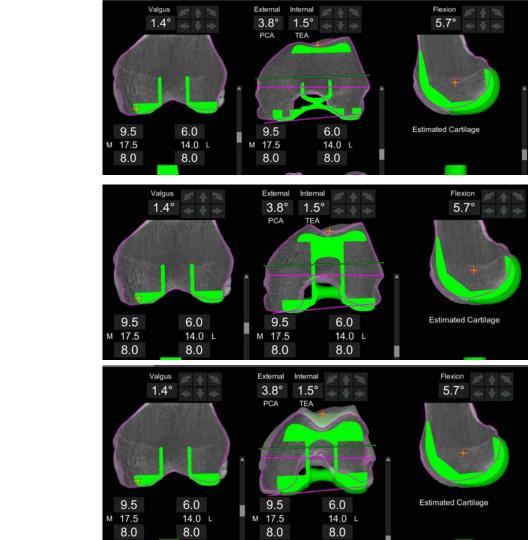
KNEE

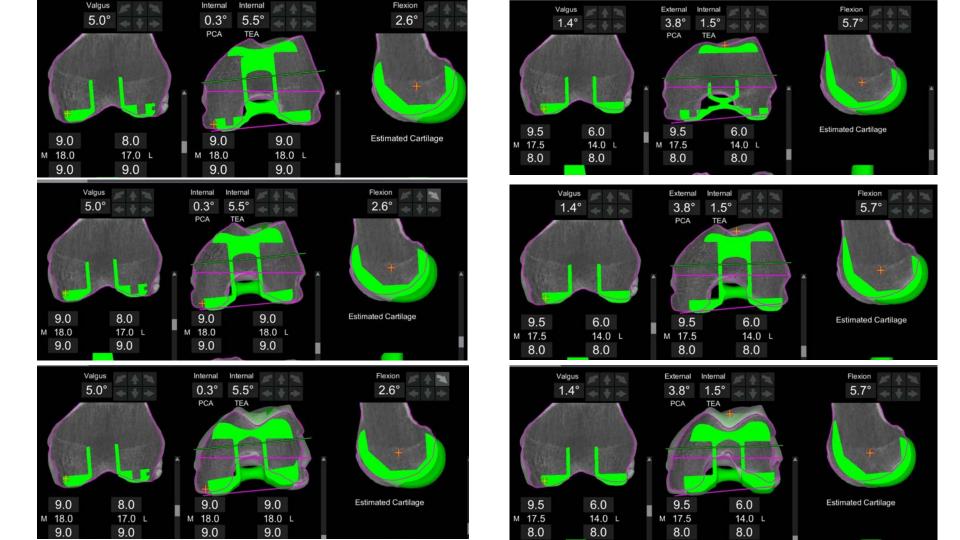
Influence of soft tissues on the proximal bony tibial slope measured with two-dimensional MRI

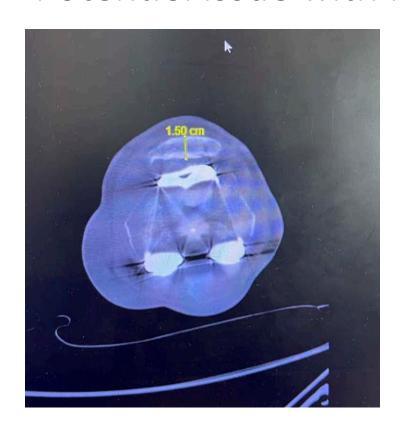

Sébastien Lustig · Corey J. Scholes · Sean P. M. Leo · Myles Coolican · David A. Parker



Variability







Potentiel issue with KA... and no bounderies

Patellar problems?

Nedopil AJ, Howell SM, Hull ML: Does Malrotation of the Tibial and Femoral Components

Compromise Function in Kinematically Aligned

Total Knee Arthroplasty

Orthop Clin North Am. 2016 Jan;47(1):41-50. ?

TAKE HOME MESSAGE

- Need for personalized alignment
- Define safe zones
- For coronal alignment
- But also rotational and sagittal (Patella ++)

« It ain't what you don't know that gets you into trouble,

it's what you know for sure that just ain't so »

Mark twain

Safe Invidual functional positioning for each patient